SOLAR PHOTOVOLTAIC ROADMAP

iea International Energy Agency

Key findings

- By 2050, PV global cumulative installed capacity could reach 3 000 gigawatts, providing 4 500 TWh per year, *i.e.* around 11% of global electricity production. In addition to avoiding 2.3 gigatonnes (Gt) of CO₂ per year, this level of PV would deliver substantial benefits in terms of the security of energy supply and socio-economic development.
- In the first decade, PV is expected to reduce system and generation costs by more than 50%. PV residential and commercial systems will achieve the first level of grid parity *i.e.* parity with electricity retail prices by 2020 in many regions. As grid parity is achieved, the policy framework should evolve towards fostering self-sustained markets, with the progressive phase-out of economic incentives, but maintaining grid access guarantees and sustained R&D support.
- Towards 2030, typical large-scale utility PV system generation costs are expected to decrease to USD 7 to USD 13 cents/kWh. As PV matures into a mainstream technology, grid integration and management and energy storage become key issues.

- The PV industry, grid operators and utilities will need to develop new technologies and strategies to integrate large amounts of PV into flexible, efficient and smart grids.
- Governments and industry must increase R&D efforts to reduce costs and ensure PV readiness for rapid deployment, while supporting longer-term technology innovations.
- There is a need to expand international collaboration in PV research, development, capacity building and financing to accelerate learning and avoid duplicating efforts.
- Emerging major economies are already investing substantially in PV research, development and deployment; however, more needs to be done to foster rural electrification and capacity building. Multilateral and bilateral aid organisations should expand their efforts to express the value of PV energy in low-carbon economic development.

Solar PV technology milestones

PV technology status and prospects

Crystalline silicon technologies		2010 - 2015		2015 - 2020		2020 - 2030 / 2050		
Efficiency targets (commercial modules)		Single-crystalline: 21%Multi-crystalline: 17%		Single-crystalline: 23%Multi-crystalline: 19%		Single-crystalline: 25%Multi-crystalline: 21%		
Industry manufacturing aspects		 Silicon (Si) consumption < 5 grams / watt (g/w) 		• Si consumption < 3 g/W		• Si consumption < 2 g/W		
R&D aspects		 New silicon materials and processing Cell contacts, emitters and passivation 		 Improved device structures Productivity and cost optim in production 	isation	 Wafer equivalent technologies New device structures with novel concepts 		
Thin film technologies		2010 - 2015		2015 - 2020		2020 - 2030		
Efficiency targets (commercial modules)		 Thin film Si: 10% Copper-indium/galliu (CIGS): 14% Cadmium-telluride (C 	im :dTe): 12%	 Thin film Si: 12% CIGS: 15% CdTe: 14% 		 Thin film Si: 15% CIGS: 18% CdTe: 15% 		
Industry manufacturing o	aspects	High rate depositionRoll-to-roll manufactuPackaging	iring	Simplified production productionLow cost packaging	cesses	 Large high-efficiency production units 		
R&D aspects		 Large area deposition Improved substrates a transparent conductiv 	processes and /e oxides	Improved cell structuresImproved deposition techn	niques	Advanced materials and concepts		
c	Concentrating	PV	Emerging	g technologies	Nove	el technologies		
Type of cell	High cost, super high efficiency		Low cost, moderate performance		• Ve ut	Very high efficiency; full spectrum utilisation		
Status and potential	 23% alternating current (AC) system efficiency demonstrated Potential to reach over 30% in the medium-term 		 Emerging technologies at demonstration level (<i>e.g.</i> polymer PV, dye PV, printed CIGS) First applications expected in niche market applications 		• W pr la • Fa te	Wide variety of new conversion principle and device concepts at lab level Family of potential breakthrough technologies		
R&D aspects	 Reach super over 45% Achieve low solutions for and tracking 	high efficiency cost, high-performance optical concentration	 Improvistabiliti comm Encapsiconceptication 	vement of efficiency and cy to the level needed for first ercial applications sulation of organic-based pts	 Pr Co Pr ar na 	roof-of-principle of new conversion oncepts rocessing, characterisation nd modelling of especially anostructured materials and devices		

Solar PV economic milestones

Targets for residential secto	2008	20	20	2030	2050	
Typical turn-key system price (2	6 000	2 7	00	1 800	1 200	
	2 000 kWh/kW	360	1	60	100	65
Typical electricity generation costs (2008 USD/MWh)	1 500 kWh/kW	480	2	10	135	90
	1 000 kWh/kW	720	3	15	205	135
Targets for commercial sect	2008	20	20	2030	2050	
Typical turn-key system price (2	5 000	2 2	50	1 500	1 000	
	2 000 kWh/kW	300	1	30	85	55
Typical electricity generation costs (2008 USD/MWh)	1 500 kWh/kW	400	175		115	75
	1 000 kWh/kW	600	260		170	110
Targets for utility sector	2008	2020		2030	2050	
Typical turn-key system price (2	4 000	1 800		1 200	800	
	2 000 kWh/kW	240	1	05	70	45
Typical electricity generation costs (2008 USD/MWh)	1 500 kWh/kW	320	140		90	60
	1 000 kWh/kW	480	210		135	90
Photovoltaic electricity gene	2010	2020	2030	2040	2050	
Residential	23	153	581	1 244	1 794	
Commercial	4	32	144	353	585	
Utility	8	81	368	910	1 498	
Off-grid	3	32	154	401	695	
Total	37	298	1 247	2 907	4 572	
Share of global electricity gene	0.2	1.3	4.6	8.5	10.8	
Photovoltaic capacity in GW	2010	2020	2030	2040	2050	
Residential	17	118	447	957	1 380	
Commercial	3	22	99	243	404	
Utility	5	49	223	551	908	
Off-grid	2	21	103	267	463	
Total	27	210	872	2 019	3 155	
Annual photovoltaic market	2010	2020	2030	2040	2050	
Residential	4.1	18	50	55	53	
Commercial	0.7	4	13	17	20	
Utility	1.6	8	28	37	44	
Off-grid	0.6	4	14	19	24	
Total annual market	7.0	34	105	127	141	

* Assumptions: Interest rate 10%, technical lifetime 25a (2008), 30a (2020), 35a (2030), 40a (2050), operations and maintenance 1% ** Best system prices lower than 3 000 USD/kW were reported in 2009

*** Average electricity generation per kW is 1 300 kWh/kW in the residential sector, 1 450 kWh/kW in the commercial sector, 1 650 kWh/kW in the utility sector and 1 500 kWh/kW in the off-grid sector

www.iea.org/roadmaps

Solar photovoltaic roadmap milestones

International Energy Agency www.iea.org/roadmaps